Merge pull request #13 from 0xalivecow/dev

Add basic pfmath functionality
This commit is contained in:
An0nymous 2024-11-14 23:12:02 +01:00 committed by GitHub
commit a0ff95548e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 841 additions and 37 deletions

View file

@ -11,6 +11,7 @@ use tasks01::{
gcm::{gcm_decrypt, gcm_encrypt},
gfmul::gfmul_task,
pad_oracle::padding_oracle,
pfmath::{gfdiv, gfpoly_add, gfpoly_divmod, gfpoly_mul, gfpoly_pow, gfpoly_powmod},
poly2block::poly2block,
sea128::sea128,
xex::{self, fde_xex},
@ -83,6 +84,44 @@ pub fn task_deploy(testcase: &Testcase) -> Result<Value> {
Ok(json)
}
"gfpoly_add" => {
let result = gfpoly_add(args)?;
let json = json!({"S" : result.to_c_array()});
Ok(json)
}
"gfpoly_mul" => {
let result = gfpoly_mul(args)?;
let json = json!({"P" : result.to_c_array()});
Ok(json)
}
"gfpoly_pow" => {
let result = gfpoly_pow(args)?;
let json = json!({"Z" : result.to_c_array()});
Ok(json)
}
"gfdiv" => {
let result = gfdiv(args)?;
let out = BASE64_STANDARD.encode(result);
let json = json!({"q" : out});
Ok(json)
}
"gfpoly_divmod" => {
let result = gfpoly_divmod(args)?;
let json = json!({"Q" : result.0.to_c_array(), "R" : result.1.to_c_array()});
Ok(json)
}
"gfpoly_powmod" => {
let result = gfpoly_powmod(args)?;
let json = json!({"Z" : result.to_c_array()});
Ok(json)
}
_ => Err(anyhow!(
"Fatal. No compatible action found. Json data was {:?}. Arguments were; {:?}",
testcase,
@ -272,4 +311,22 @@ mod tests {
Ok(())
}
#[test]
fn test_task_gcm_gfpoly_add() -> Result<()> {
let json = fs::read_to_string("test_json/gcm_decrypt_sea.json").unwrap();
let parsed = parse_json(json).unwrap();
let expected = json!({ "responses" : { "b856d760-023d-4b00-bad2-15d2b6da22fe" : {
"plaintext": "RGFzIGlzdCBlaW4gVGVzdA==",
"authentic": true,
}}});
assert_eq!(
serde_json::to_value(task_distrubute(&parsed)?).unwrap(),
serde_json::to_value(expected).unwrap()
);
Ok(())
}
}

View file

@ -16,7 +16,7 @@ pub fn gfmul_task(args: &Value) -> Result<Vec<u8>> {
let semantic: String = serde_json::from_value(args["semantic"].clone())?;
let result = gfmul(poly_a, poly_b, &semantic)?;
let result = gfmul(&poly_a, &poly_b, &semantic)?;
Ok(result)
}
@ -39,7 +39,7 @@ mod tests {
let poly2_text: String = serde_json::from_value(args["b"].clone())?;
let poly_b = BASE64_STANDARD.decode(poly2_text)?;
let result = BASE64_STANDARD.encode(gfmul(poly_a, poly_b, "xex")?);
let result = BASE64_STANDARD.encode(gfmul(&poly_a, &poly_b, "xex")?);
assert_eq!(
result, "hSQAAAAAAAAAAAAAAAAAAA==",
@ -59,7 +59,7 @@ mod tests {
let poly2_text: String = serde_json::from_value(args["b"].clone())?;
let poly_b = BASE64_STANDARD.decode(poly2_text)?;
let result = BASE64_STANDARD.encode(gfmul(poly_a, poly_b, "xex")?);
let result = BASE64_STANDARD.encode(gfmul(&poly_a, &poly_b, "xex")?);
assert_eq!(
result, "QKgUAAAAAAAAAAAAAAAAAA==",
@ -79,7 +79,7 @@ mod tests {
let poly2_text: String = serde_json::from_value(args["b"].clone())?;
let poly_b = BASE64_STANDARD.decode(poly2_text)?;
let result = BASE64_STANDARD.encode(gfmul(poly_a, poly_b, "xex")?);
let result = BASE64_STANDARD.encode(gfmul(&poly_a, &poly_b, "xex")?);
assert_eq!(
result, "UIAUAAAAAAAAAAAAAAAAAA==",
@ -99,27 +99,7 @@ mod tests {
let poly2_text: String = serde_json::from_value(args["b"].clone())?;
let poly_b = BASE64_STANDARD.decode(poly2_text)?;
let result = BASE64_STANDARD.encode(gfmul(poly_a, poly_b, "xex")?);
assert_eq!(
result, "hSQAAAAAAAAAAAAAAAAAAA==",
"Failure. Calulated result was: {}",
result
);
Ok(())
}
#[test]
fn gfmul_task01_gcm() -> Result<()> {
let args: Value = json!({"a": "AAAAAAAAAAAAAAAQBAAAAA==", "b": "IAAAAAAAAACAAAAAAAAAAA=="});
let poly1_text: String = serde_json::from_value(args["a"].clone())?;
let poly_a = BASE64_STANDARD.decode(poly1_text)?;
let poly2_text: String = serde_json::from_value(args["b"].clone())?;
let poly_b = BASE64_STANDARD.decode(poly2_text)?;
let result = BASE64_STANDARD.encode(gfmul(poly_a, poly_b, "gcm")?);
let result = BASE64_STANDARD.encode(gfmul(&poly_a, &poly_b, "xex")?);
assert_eq!(
result, "hSQAAAAAAAAAAAAAAAAAAA==",

View file

@ -2,6 +2,7 @@ pub mod block2poly;
pub mod gcm;
pub mod gfmul;
pub mod pad_oracle;
pub mod pfmath;
pub mod poly2block;
pub mod sea128;
pub mod xex;

View file

@ -0,0 +1,69 @@
use anyhow::Result;
use base64::{prelude::BASE64_STANDARD, Engine};
use serde_json::Value;
use crate::utils::field::{FieldElement, Polynomial};
pub fn gfpoly_add(args: &Value) -> Result<Polynomial> {
let poly_a = Polynomial::from_c_array(&args["A"].clone());
let poly_b = Polynomial::from_c_array(&args["B"].clone());
let result = poly_a + poly_b;
Ok(result)
}
pub fn gfpoly_mul(args: &Value) -> Result<Polynomial> {
let poly_a = Polynomial::from_c_array(&args["A"].clone());
let poly_b = Polynomial::from_c_array(&args["B"].clone());
let result = poly_a * poly_b;
Ok(result)
}
pub fn gfpoly_pow(args: &Value) -> Result<Polynomial> {
let poly_a = Polynomial::from_c_array(&args["A"].clone());
let k: u128 = serde_json::from_value(args["k"].clone())?;
let result = poly_a.pow(k);
Ok(result)
}
pub fn gfdiv(args: &Value) -> Result<FieldElement> {
let f1_text: String = serde_json::from_value(args["a"].clone())?;
let f_a = FieldElement::new(BASE64_STANDARD.decode(f1_text)?);
let f2_text: String = serde_json::from_value(args["b"].clone())?;
let f_b = FieldElement::new(BASE64_STANDARD.decode(f2_text)?);
let result = f_a / f_b;
Ok(result)
}
pub fn gfpoly_divmod(args: &Value) -> Result<(Polynomial, Polynomial)> {
let poly_a = Polynomial::from_c_array(&args["A"].clone());
let poly_b = Polynomial::from_c_array(&args["B"].clone());
let result = poly_a.div(&poly_b);
Ok(result)
}
pub fn gfpoly_powmod(args: &Value) -> Result<Polynomial> {
let poly_a = Polynomial::from_c_array(&args["A"].clone());
let poly_m = Polynomial::from_c_array(&args["M"].clone());
let k: u128 = serde_json::from_value(args["k"].clone())?;
let result = poly_a.pow_mod(k, poly_m);
Ok(result)
}

View file

@ -340,25 +340,25 @@ pub fn ghash(
eprintln!("Ad chunks before first next {:001X?}", ad_chunks);
let inter1 = xor_bytes(&output, ad_chunks.next().unwrap().to_vec())?;
let mut inter_loop = gfmul(inter1, auth_key_h.clone(), "gcm")?;
let mut inter_loop = gfmul(&inter1, &auth_key_h, "gcm")?;
eprintln!("Ad chunks after first next {:001X?}", ad_chunks);
for chunk in ad_chunks {
eprintln!("Inside ad chunk loop");
eprintln!("Ad chunk in loop {:001X?}", chunk);
let inter2 = xor_bytes(&inter_loop, chunk.to_vec())?;
inter_loop = gfmul(inter2, auth_key_h.clone(), "gcm")?;
inter_loop = gfmul(&inter2, &auth_key_h, "gcm")?;
}
let cipher_chunks = ciphertext.chunks(16);
for chunk in cipher_chunks {
let inter3 = xor_bytes(&inter_loop, chunk.to_vec())?;
inter_loop = gfmul(inter3, auth_key_h.clone(), "gcm")?;
inter_loop = gfmul(&inter3, &auth_key_h, "gcm")?;
}
let inter4 = xor_bytes(&inter_loop, l_field)?;
inter_loop = gfmul(inter4, auth_key_h.clone(), "gcm")?;
inter_loop = gfmul(&inter4, &auth_key_h, "gcm")?;
eprintln!("GHASH auth tag: {:001X?}", inter_loop);

View file

@ -1,7 +1,424 @@
use anyhow::{anyhow, Ok, Result};
use base64::Engine;
use std::{
env::args,
ops::{Add, BitXor, Div, Mul, Rem, Sub},
result,
};
use super::poly::gfmul;
use anyhow::{anyhow, Ok, Result};
use base64::prelude::*;
use serde_json::Value;
use crate::{tasks::tasks01::poly2block::poly2block, utils::poly::polynomial_2_block};
use super::{math::xor_bytes, poly::gfmul};
#[derive(Debug)]
pub struct Polynomial {
polynomial: Vec<FieldElement>,
}
impl Polynomial {
pub const fn new(polynomial: Vec<FieldElement>) -> Self {
Self { polynomial }
}
pub fn from_c_array(array: &Value) -> Self {
let mut polynomial: Vec<FieldElement> = vec![];
let c_array: Vec<String> = array
.as_array()
.expect("Input is not an array")
.iter()
.map(|x| {
x.as_str()
.expect("Array element is not a string")
.to_string()
})
.collect();
eprintln!("{:?}", c_array);
for coefficient in c_array {
polynomial.push(FieldElement::new(
BASE64_STANDARD
.decode(coefficient)
.expect("Error on poly decode:"),
));
}
Self { polynomial }
}
pub fn to_c_array(self) -> Vec<String> {
let mut output: Vec<String> = vec![];
for coeff in self.polynomial {
output.push(BASE64_STANDARD.encode(coeff));
}
output
}
pub fn pow(&self, mut exponent: u128) -> Polynomial {
if exponent == 0 {
return Polynomial::new(vec![FieldElement::new(vec![0])]);
}
let base = self.clone();
let mut result = base.clone();
exponent -= 1;
while exponent > 0 {
result = result * base.clone();
exponent -= 1;
}
result
}
pub fn pow_mod(mut self, mut exponent: u128, modulus: Polynomial) -> Polynomial {
let mut result: Polynomial = Polynomial::new(vec![FieldElement::new(
polynomial_2_block(vec![0], "gcm").unwrap(),
)]);
//eprintln!("Initial result: {:?}", result);
while exponent > 0 {
//eprintln!("Current exponent: {:02X}", exponent);
if exponent & 1 == 1 {
let temp = &self * &result;
//eprintln!("After multiplication: {:?}", temp);
result = temp.div(&modulus).1;
//eprintln!("After mod: {:?}", result);
}
let temp_square = &self * &self;
//eprintln!("After squaring: {:?}", temp_square);
self = temp_square.div(&modulus).1;
//eprintln!("After mod: {:?}", self);
exponent >>= 1;
}
result
}
// Returns (quotient, remainder)
pub fn div(self, rhs: &Self) -> (Self, Self) {
// Div by zero check ommitted since data is guaranteed to be non 0
let mut remainder = self.clone();
let divisor = rhs;
let dividend_deg = remainder.polynomial.len() - 1;
let divisor_deg = divisor.polynomial.len() - 1;
if dividend_deg < divisor_deg {
return (
Polynomial::new(vec![FieldElement::new(
polynomial_2_block(vec![0; 16], "gcm").unwrap(),
)]),
remainder,
);
}
let mut quotient_coeffs =
vec![
FieldElement::new(polynomial_2_block(vec![0; 16], "gcm").unwrap());
dividend_deg - divisor_deg + 1
];
while remainder.polynomial.len() >= divisor.polynomial.len() {
let deg_diff = remainder.polynomial.len() - divisor.polynomial.len();
let leading_dividend = remainder.polynomial.last().unwrap();
let leading_divisor = divisor.polynomial.last().unwrap();
let quot_coeff = leading_dividend / leading_divisor;
quotient_coeffs[deg_diff] = quot_coeff.clone();
let mut subtrahend =
vec![FieldElement::new(polynomial_2_block(vec![0; 16], "gcm").unwrap()); deg_diff];
subtrahend.extend(
divisor
.polynomial
.iter()
.map(|x| x.clone() * quot_coeff.clone()),
);
let subtrahend_poly = Polynomial::new(subtrahend);
remainder = remainder + subtrahend_poly;
while !remainder.polynomial.is_empty()
&& remainder
.polynomial
.last()
.unwrap()
.as_ref()
.iter()
.all(|&x| x == 0)
{
remainder.polynomial.pop();
}
}
(Polynomial::new(quotient_coeffs), remainder)
}
}
impl Clone for Polynomial {
fn clone(&self) -> Self {
Polynomial {
polynomial: self.polynomial.clone(),
}
}
}
impl Mul for Polynomial {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
let mut polynomial: Vec<FieldElement> =
vec![FieldElement::new(vec![0; 16]); self.polynomial.len() + rhs.polynomial.len() - 1];
for i in 0..self.polynomial.len() {
for j in 0..rhs.polynomial.len() {
polynomial[i + j] = &polynomial[i + j]
+ &(self.polynomial.get(i).unwrap() * rhs.polynomial.get(j).unwrap());
}
}
Polynomial::new(polynomial)
}
}
impl Mul for &Polynomial {
type Output = Polynomial;
fn mul(self, rhs: Self) -> Self::Output {
let mut polynomial: Vec<FieldElement> =
vec![FieldElement::new(vec![0; 16]); self.polynomial.len() + rhs.polynomial.len() - 1];
for i in 0..self.polynomial.len() {
for j in 0..rhs.polynomial.len() {
polynomial[i + j] = &polynomial[i + j]
+ &(self.polynomial.get(i).unwrap() * rhs.polynomial.get(j).unwrap());
}
}
Polynomial::new(polynomial)
}
}
impl Add for Polynomial {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let mut polynomial: Vec<FieldElement>;
if self.polynomial.len() > rhs.polynomial.len() {
polynomial = self.polynomial.clone();
for i in 0..rhs.polynomial.len() {
polynomial[i] = polynomial[i].clone() + rhs.polynomial[i].clone();
}
} else {
polynomial = rhs.polynomial.clone();
for i in 0..self.polynomial.len() {
polynomial[i] = polynomial[i].clone() + self.polynomial[i].clone();
}
}
Polynomial::new(polynomial)
}
}
// Helper implementation for subtraction
impl Sub for &FieldElement {
type Output = FieldElement;
fn sub(self, rhs: Self) -> FieldElement {
// In a field of characteristic 2, addition and subtraction are the same operation (XOR)
self + rhs
}
}
// Helper trait for checking emptiness
trait IsEmpty {
fn is_empty(&self) -> bool;
}
impl IsEmpty for Polynomial {
fn is_empty(&self) -> bool {
self.polynomial.is_empty()
}
}
impl AsRef<[FieldElement]> for Polynomial {
fn as_ref(&self) -> &[FieldElement] {
&self.polynomial
}
}
#[derive(Debug)]
pub struct FieldElement {
field_element: Vec<u8>,
}
impl FieldElement {
pub const IRREDUCIBLE_POLYNOMIAL: [u8; 17] = [
87, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 01,
];
pub const fn new(field_element: Vec<u8>) -> Self {
Self { field_element }
}
pub fn mul(&self, poly_a: Vec<u8>, poly_b: Vec<u8>) -> Result<Vec<u8>> {
gfmul(&poly_a, &poly_b, "gcm")
}
pub fn to_b64(&self) -> String {
BASE64_STANDARD.encode(&self.field_element)
}
pub fn pow(&self, mut exponent: u128) -> FieldElement {
if exponent == 0 {
// Return polynomial with coefficient 1
return FieldElement::new(vec![1]);
}
let base = self.clone();
let mut result = base.clone();
exponent -= 1; // Subtract 1 because we already set result to base
while exponent > 0 {
result = result * base.clone();
exponent -= 1;
}
result
}
pub fn inv(mut self) -> Self {
let mut inverser: u128 = 0xfffffffffffffffffffffffffffffffe;
let mut inverse: Vec<u8> = polynomial_2_block(vec![0], "gcm").unwrap();
//eprintln!("Inverse start {:02X?}", inverse);
while inverser > 0 {
//eprintln!("{:02X}", inverser);
if inverser & 1 == 1 {
inverse = gfmul(&self.field_element, &inverse, "gcm").unwrap();
}
inverser >>= 1;
self.field_element = gfmul(&self.field_element, &self.field_element, "gcm")
.expect("Error in sqrmul sqr");
}
//eprintln!("Inverse rhs {:?}", inverse);
FieldElement::new(inverse)
}
}
impl Mul for FieldElement {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
FieldElement::new(
gfmul(&self.field_element, &rhs.field_element, "gcm")
.expect("Error during multiplication"),
)
}
}
impl Mul for &FieldElement {
type Output = FieldElement;
fn mul(self, rhs: &FieldElement) -> FieldElement {
FieldElement::new(
gfmul(&self.field_element, &rhs.field_element, "gcm")
.expect("Error during multiplication"),
)
}
}
impl Add for FieldElement {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
FieldElement::new(
xor_bytes(&self.field_element, rhs.field_element).expect("Error in poly add"),
)
}
}
impl Add for &FieldElement {
type Output = FieldElement;
fn add(self, rhs: Self) -> Self::Output {
FieldElement::new(
xor_bytes(&self.field_element, rhs.field_element.clone()).expect("Error in poly add"),
)
}
}
impl AsRef<[u8]> for FieldElement {
fn as_ref(&self) -> &[u8] {
&self.field_element.as_ref()
}
}
impl Clone for FieldElement {
fn clone(&self) -> Self {
FieldElement {
field_element: self.field_element.clone(),
}
}
}
impl BitXor for FieldElement {
type Output = Self;
fn bitxor(self, rhs: Self) -> Self::Output {
let result: Vec<u8> = self
.field_element
.iter()
.zip(rhs.field_element.iter())
.map(|(&x1, &x2)| x1 ^ x2)
.collect();
FieldElement::new(result)
}
}
impl Div for FieldElement {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
eprintln!("RHS in div{:02X?}", &rhs);
let inverse = rhs.inv();
eprintln!("Inverse in div{:02X?}", inverse);
self.clone() * inverse
}
}
impl Div for &FieldElement {
type Output = FieldElement;
fn div(self, rhs: Self) -> Self::Output {
// First clone and invert the divisor (rhs)
let rhs_inv = rhs.clone().inv();
// Multiply original number by the inverse
self.clone() * rhs_inv
}
}
/*
impl Rem for FieldElement {
type Output = Self;
fn rem(self, rhs: Self) -> Self::Output {
let result: FieldElement = self.field_element;
while self.field_element[15] != 0x00 {
self.field_element
}
todo!();
}
}
*/
/*
impl BitXor for FieldElement {
fn bitxor(self, rhs: Self) -> Self::Output {
FieldElement
}
}
*/
/*
impl From<Vec<u8>> for FieldElement {
fn from(item: Vec<u8>) -> Self {
FieldElement { bytes: item }
}
}
*/
#[derive(Debug)]
pub struct ByteArray(pub Vec<u8>);
@ -37,13 +454,13 @@ impl ByteArray {
let alpha_poly: Vec<u8> = base64::prelude::BASE64_STANDARD
.decode("AgAAAAAAAAAAAAAAAAAAAA==")
.expect("Decode failed");
self.0 = gfmul(self.0.clone(), alpha_poly, "xex").unwrap();
self.0 = gfmul(&self.0, &alpha_poly, "xex").unwrap();
}
"gcm" => {
let alpha_poly: Vec<u8> = base64::prelude::BASE64_STANDARD
.decode("AgAAAAAAAAAAAAAAAAAAAA==")
.expect("Decode failed");
self.0 = gfmul(self.0.clone(), alpha_poly, "gcm").unwrap();
self.0 = gfmul(&self.0, &alpha_poly, "gcm").unwrap();
}
_ => {}
}
@ -105,6 +522,8 @@ impl ByteArray {
#[cfg(test)]
mod tests {
use super::*;
use base64::prelude::*;
use serde_json::json;
use std::fs;
#[test]
@ -199,4 +618,184 @@ mod tests {
assert_eq!(byte_array.0, vec![0x55, 0x55]);
}
#[test]
fn test_field_add_01() {
let element1: FieldElement =
FieldElement::new(BASE64_STANDARD.decode("NeverGonnaGiveYouUpAAA==").unwrap());
let element2: FieldElement =
FieldElement::new(BASE64_STANDARD.decode("KryptoanalyseAAAAAAAAA==").unwrap());
let sum = element2 + element1;
assert_eq!(BASE64_STANDARD.encode(sum), "H1d3GuyA9/0OxeYouUpAAA==");
}
#[test]
fn test_field_add_02() {
let element1: FieldElement =
FieldElement::new(BASE64_STANDARD.decode("NeverGonnaLetYouDownAA==").unwrap());
let element2: FieldElement =
FieldElement::new(BASE64_STANDARD.decode("DHBWMannheimAAAAAAAAAA==").unwrap());
let sum = element2 + element1;
assert_eq!(BASE64_STANDARD.encode(sum), "OZuIncPAGEp4tYouDownAA==");
}
#[test]
fn test_field_add_03() {
let json1 = json!([
"NeverGonnaGiveYouUpAAA==",
"NeverGonnaLetYouDownAA==",
"NeverGonnaRunAroundAAA==",
"AndDesertYouAAAAAAAAAA=="
]);
let json2 = json!(["KryptoanalyseAAAAAAAAA==", "DHBWMannheimAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
let sum = element2 + element1;
assert_eq!(
sum.to_c_array(),
vec![
"H1d3GuyA9/0OxeYouUpAAA==",
"OZuIncPAGEp4tYouDownAA==",
"NeverGonnaRunAroundAAA==",
"AndDesertYouAAAAAAAAAA=="
]
);
}
#[test]
fn test_field_mul_01() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let json2 = json!(["0AAAAAAAAAAAAAAAAAAAAA==", "IQAAAAAAAAAAAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
//eprintln!("{:?}", element1);
let result = element1 * element2;
assert_eq!(
result.to_c_array(),
vec![
"MoAAAAAAAAAAAAAAAAAAAA==",
"sUgAAAAAAAAAAAAAAAAAAA==",
"MbQAAAAAAAAAAAAAAAAAAA==",
"AAhAAAAAAAAAAAAAAAAAAA=="
]
);
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_field_pow_01() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let result = element1.pow(3);
assert_eq!(
result.to_c_array(),
vec![
"AkkAAAAAAAAAAAAAAAAAAA==",
"DDAAAAAAAAAAAAAAAAAAAA==",
"LQIIAAAAAAAAAAAAAAAAAA==",
"8AAAAAAAAAAAAAAAAAAAAA==",
"ACgCQAAAAAAAAAAAAAAAAA==",
"AAAMAAAAAAAAAAAAAAAAAA==",
"AAAAAgAAAAAAAAAAAAAAAA=="
]
);
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_field_pow_mod_01() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let result = element1.pow(3);
assert_eq!(
result.to_c_array(),
vec![
"AkkAAAAAAAAAAAAAAAAAAA==",
"DDAAAAAAAAAAAAAAAAAAAA==",
"LQIIAAAAAAAAAAAAAAAAAA==",
"8AAAAAAAAAAAAAAAAAAAAA==",
"ACgCQAAAAAAAAAAAAAAAAA==",
"AAAMAAAAAAAAAAAAAAAAAA==",
"AAAAAgAAAAAAAAAAAAAAAA=="
]
);
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_poly_div_01() {
let element1 =
FieldElement::new(BASE64_STANDARD.decode("JAAAAAAAAAAAAAAAAAAAAA==").unwrap());
let element2 =
FieldElement::new(BASE64_STANDARD.decode("wAAAAAAAAAAAAAAAAAAAAA==").unwrap());
let result = element1 / element2;
assert_eq!(BASE64_STANDARD.encode(result), "OAAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_field_poly_div_01() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let json2 = json!(["0AAAAAAAAAAAAAAAAAAAAA==", "IQAAAAAAAAAAAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
//eprintln!("{:?}", element1);
println!("Beginning the new division");
let (result, remainder) = element1.div(&element2);
assert_eq!(
result.to_c_array(),
vec!["nAIAgCAIAgCAIAgCAIAgCg==", "m85znOc5znOc5znOc5znOQ=="]
);
assert_eq!(remainder.to_c_array(), vec!["lQNA0DQNA0DQNA0DQNA0Dg=="]);
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_field_poly_powmod_01() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let json2 = json!(["KryptoanalyseAAAAAAAAA==", "DHBWMannheimAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let modulus: Polynomial = Polynomial::from_c_array(&json2);
let result = element1.pow_mod(1000, modulus);
eprintln!("Result is: {:02X?}", result);
assert_eq!(result.to_c_array(), vec!["XrEhmKuat+Glt5zZWtMo6g=="]);
}
}

View file

@ -7,14 +7,14 @@ use std::{str::FromStr, u128, u8, usize};
use super::{field, math::reverse_bits_in_bytevec};
pub const RED_POLY: u128 = 0x87000000_00000000_00000000_00000000;
pub fn gfmul(poly_a: Vec<u8>, poly_b: Vec<u8>, semantic: &str) -> Result<Vec<u8>> {
pub fn gfmul(poly_a: &Vec<u8>, poly_b: &Vec<u8>, semantic: &str) -> Result<Vec<u8>> {
let mut red_poly_bytes: ByteArray = ByteArray(RED_POLY.to_be_bytes().to_vec());
red_poly_bytes.0.push(0x01);
let mut poly1: ByteArray = ByteArray(poly_a);
let mut poly1: ByteArray = ByteArray(poly_a.to_owned());
poly1.0.push(0x00);
let mut poly2: ByteArray = ByteArray(poly_b);
let mut poly2: ByteArray = ByteArray(poly_b.to_owned());
poly2.0.push(0x00);
if semantic == "gcm" {