refactor: Split Polynomial class into poly.rs file
This commit is contained in:
parent
ad8326b51e
commit
a5a3ea61fa
3 changed files with 825 additions and 798 deletions
|
|
@ -1,8 +1,391 @@
|
|||
use crate::utils::field::ByteArray;
|
||||
use anyhow::{anyhow, Result};
|
||||
use base64::prelude::*;
|
||||
use std::{str::FromStr, u128, u8, usize};
|
||||
|
||||
use std::{
|
||||
cmp::Ordering,
|
||||
mem::discriminant,
|
||||
ops::{Add, BitXor, Div, Mul, Sub},
|
||||
};
|
||||
|
||||
use anyhow::{anyhow, Ok, Result};
|
||||
use serde_json::Value;
|
||||
|
||||
use super::field::FieldElement;
|
||||
use super::math::{reverse_bits_in_bytevec, xor_bytes};
|
||||
|
||||
#[derive(Debug, serde::Serialize)]
|
||||
pub struct Polynomial {
|
||||
polynomial: Vec<FieldElement>,
|
||||
}
|
||||
|
||||
impl Polynomial {
|
||||
pub const fn new(polynomial: Vec<FieldElement>) -> Self {
|
||||
Self { polynomial }
|
||||
}
|
||||
|
||||
pub fn from_c_array(array: &Value) -> Self {
|
||||
let mut polynomial: Vec<FieldElement> = vec![];
|
||||
let c_array: Vec<String> = array
|
||||
.as_array()
|
||||
.expect("Input is not an array")
|
||||
.iter()
|
||||
.map(|x| {
|
||||
x.as_str()
|
||||
.expect("Array element is not a string")
|
||||
.to_string()
|
||||
})
|
||||
.collect();
|
||||
|
||||
eprintln!("{:?}", c_array);
|
||||
|
||||
for coefficient in c_array {
|
||||
polynomial.push(FieldElement::new(
|
||||
BASE64_STANDARD
|
||||
.decode(coefficient)
|
||||
.expect("Error on poly decode:"),
|
||||
));
|
||||
}
|
||||
Self { polynomial }
|
||||
}
|
||||
|
||||
pub fn to_c_array(self) -> Vec<String> {
|
||||
let mut output: Vec<String> = vec![];
|
||||
for coeff in self.polynomial {
|
||||
output.push(BASE64_STANDARD.encode(coeff));
|
||||
}
|
||||
|
||||
output
|
||||
}
|
||||
|
||||
pub fn pow(&self, mut exponent: u128) -> Polynomial {
|
||||
if exponent == 0 {
|
||||
return Polynomial::new(vec![FieldElement::new(
|
||||
polynomial_2_block(vec![0], "gcm").unwrap(),
|
||||
)]);
|
||||
}
|
||||
|
||||
let base = self.clone();
|
||||
let mut result = base.clone();
|
||||
exponent -= 1;
|
||||
while exponent > 0 {
|
||||
result = result * base.clone();
|
||||
exponent -= 1;
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
pub fn pow_mod(mut self, mut exponent: u128, modulus: Polynomial) -> Polynomial {
|
||||
let mut result: Polynomial = Polynomial::new(vec![FieldElement::new(
|
||||
polynomial_2_block(vec![0], "gcm").unwrap(),
|
||||
)]);
|
||||
|
||||
if exponent == 1 {
|
||||
eprintln!("special case 1: {:02X?}", self.clone().div(&modulus).1);
|
||||
|
||||
return self.div(&modulus).1;
|
||||
}
|
||||
|
||||
if exponent == 0 {
|
||||
let result = Polynomial::new(vec![FieldElement::new(
|
||||
polynomial_2_block(vec![0], "gcm").unwrap(),
|
||||
)]);
|
||||
|
||||
eprintln!("Returned value is: {:02X?}", result);
|
||||
return result;
|
||||
}
|
||||
|
||||
//eprintln!("Initial result: {:?}", result);
|
||||
while exponent > 0 {
|
||||
//eprintln!("Current exponent: {:02X}", exponent);
|
||||
if exponent & 1 == 1 {
|
||||
let temp = &self * &result;
|
||||
//eprintln!("After multiplication: {:?}", temp);
|
||||
result = temp.div(&modulus).1;
|
||||
//eprintln!("After mod: {:?}", result);
|
||||
}
|
||||
let temp_square = &self * &self;
|
||||
//eprintln!("After squaring: {:?}", temp_square);
|
||||
self = temp_square.div(&modulus).1;
|
||||
//eprintln!("After mod: {:?}", self);
|
||||
exponent >>= 1;
|
||||
}
|
||||
|
||||
eprintln!("result in powmod before reduction: {:02X?}", result);
|
||||
|
||||
while !result.polynomial.is_empty()
|
||||
&& result
|
||||
.polynomial
|
||||
.last()
|
||||
.unwrap()
|
||||
.as_ref()
|
||||
.iter()
|
||||
.all(|&x| x == 0)
|
||||
{
|
||||
result.polynomial.pop();
|
||||
}
|
||||
|
||||
eprintln!("result in powmod after reduction: {:02X?}", result);
|
||||
|
||||
if result.is_empty() {
|
||||
result = Polynomial::new(vec![FieldElement::new(vec![0; 16])]);
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
// Returns (quotient, remainder)
|
||||
pub fn div(self, rhs: &Self) -> (Self, Self) {
|
||||
// Div by zero check ommitted since data is guaranteed to be non 0
|
||||
|
||||
eprintln!("{:?}, {:?}", self.polynomial.len(), rhs.polynomial.len());
|
||||
|
||||
if self.polynomial.len() < rhs.polynomial.len() {
|
||||
return (Polynomial::new(vec![FieldElement::new(vec![0; 16])]), self);
|
||||
}
|
||||
|
||||
let mut remainder = self.clone();
|
||||
let divisor = rhs;
|
||||
let dividend_deg = remainder.polynomial.len() - 1;
|
||||
let divisor_deg = divisor.polynomial.len() - 1;
|
||||
|
||||
if dividend_deg < divisor_deg {
|
||||
return (
|
||||
Polynomial::new(vec![FieldElement::new(
|
||||
polynomial_2_block(vec![0; 16], "gcm").unwrap(),
|
||||
)]),
|
||||
remainder,
|
||||
);
|
||||
}
|
||||
|
||||
let mut quotient_coeffs =
|
||||
vec![
|
||||
FieldElement::new(polynomial_2_block(vec![0; 16], "gcm").unwrap());
|
||||
dividend_deg - divisor_deg + 1
|
||||
];
|
||||
|
||||
while remainder.polynomial.len() >= divisor.polynomial.len() {
|
||||
let deg_diff = remainder.polynomial.len() - divisor.polynomial.len();
|
||||
|
||||
let leading_dividend = remainder.polynomial.last().unwrap();
|
||||
let leading_divisor = divisor.polynomial.last().unwrap();
|
||||
let quot_coeff = leading_dividend / leading_divisor;
|
||||
|
||||
quotient_coeffs[deg_diff] = quot_coeff.clone();
|
||||
|
||||
let mut subtrahend =
|
||||
vec![FieldElement::new(polynomial_2_block(vec![0; 16], "gcm").unwrap()); deg_diff];
|
||||
subtrahend.extend(
|
||||
divisor
|
||||
.polynomial
|
||||
.iter()
|
||||
.map(|x| x.clone() * quot_coeff.clone()),
|
||||
);
|
||||
let subtrahend_poly = Polynomial::new(subtrahend);
|
||||
|
||||
remainder = remainder + subtrahend_poly;
|
||||
|
||||
while !remainder.polynomial.is_empty()
|
||||
&& remainder
|
||||
.polynomial
|
||||
.last()
|
||||
.unwrap()
|
||||
.as_ref()
|
||||
.iter()
|
||||
.all(|&x| x == 0)
|
||||
{
|
||||
remainder.polynomial.pop();
|
||||
}
|
||||
}
|
||||
|
||||
if remainder.is_empty() {
|
||||
remainder = Polynomial::new(vec![FieldElement::new(vec![0; 16])]);
|
||||
}
|
||||
(Polynomial::new(quotient_coeffs), remainder)
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
for field_element in &self.polynomial {
|
||||
if !field_element.is_zero() {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
|
||||
fn monic(mut self) -> Self {
|
||||
let divident = self.polynomial.last().unwrap().clone();
|
||||
|
||||
for fieldelement in &mut self.polynomial.iter_mut() {
|
||||
*fieldelement = fieldelement.clone() / divident.clone();
|
||||
}
|
||||
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl Clone for Polynomial {
|
||||
fn clone(&self) -> Self {
|
||||
Polynomial {
|
||||
polynomial: self.polynomial.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for Polynomial {
|
||||
type Output = Self;
|
||||
fn mul(self, rhs: Self) -> Self::Output {
|
||||
if self.is_zero() || rhs.is_zero() {
|
||||
return Polynomial::new(vec![FieldElement::new(vec![0; 16])]);
|
||||
}
|
||||
let mut polynomial: Vec<FieldElement> =
|
||||
vec![FieldElement::new(vec![0; 16]); self.polynomial.len() + rhs.polynomial.len() - 1];
|
||||
for i in 0..self.polynomial.len() {
|
||||
for j in 0..rhs.polynomial.len() {
|
||||
polynomial[i + j] = &polynomial[i + j]
|
||||
+ &(self.polynomial.get(i).unwrap() * rhs.polynomial.get(j).unwrap());
|
||||
}
|
||||
}
|
||||
Polynomial::new(polynomial)
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for &Polynomial {
|
||||
type Output = Polynomial;
|
||||
fn mul(self, rhs: Self) -> Self::Output {
|
||||
if self.is_zero() || rhs.is_zero() {
|
||||
return Polynomial::new(vec![FieldElement::new(vec![0])]);
|
||||
}
|
||||
let mut polynomial: Vec<FieldElement> =
|
||||
vec![FieldElement::new(vec![0; 16]); self.polynomial.len() + rhs.polynomial.len() - 1];
|
||||
for i in 0..self.polynomial.len() {
|
||||
for j in 0..rhs.polynomial.len() {
|
||||
polynomial[i + j] = &polynomial[i + j]
|
||||
+ &(self.polynomial.get(i).unwrap() * rhs.polynomial.get(j).unwrap());
|
||||
}
|
||||
}
|
||||
Polynomial::new(polynomial)
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for Polynomial {
|
||||
type Output = Self;
|
||||
fn add(self, rhs: Self) -> Self::Output {
|
||||
let mut polynomial: Vec<FieldElement>;
|
||||
|
||||
if self.polynomial.len() > rhs.polynomial.len() {
|
||||
polynomial = self.polynomial.clone();
|
||||
for i in 0..rhs.polynomial.len() {
|
||||
polynomial[i] = polynomial[i].clone() + rhs.polynomial[i].clone();
|
||||
}
|
||||
} else {
|
||||
polynomial = rhs.polynomial.clone();
|
||||
for i in 0..self.polynomial.len() {
|
||||
polynomial[i] = polynomial[i].clone() + self.polynomial[i].clone();
|
||||
}
|
||||
}
|
||||
|
||||
while !polynomial.is_empty() && polynomial.last().unwrap().as_ref().iter().all(|&x| x == 0)
|
||||
{
|
||||
polynomial.pop();
|
||||
}
|
||||
|
||||
if polynomial.is_empty() {
|
||||
return Polynomial::new(vec![FieldElement::new(vec![0; 16])]);
|
||||
}
|
||||
|
||||
Polynomial::new(polynomial)
|
||||
}
|
||||
}
|
||||
|
||||
trait IsEmpty {
|
||||
fn is_empty(&self) -> bool;
|
||||
}
|
||||
|
||||
impl IsEmpty for Polynomial {
|
||||
fn is_empty(&self) -> bool {
|
||||
self.polynomial.is_empty()
|
||||
}
|
||||
}
|
||||
impl AsRef<[FieldElement]> for Polynomial {
|
||||
fn as_ref(&self) -> &[FieldElement] {
|
||||
&self.polynomial
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for Polynomial {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
if self.polynomial.len() != other.polynomial.len() {
|
||||
return false;
|
||||
}
|
||||
// Compare each coefficient
|
||||
self.polynomial
|
||||
.iter()
|
||||
.zip(other.polynomial.iter())
|
||||
.all(|(a, b)| a == b)
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for Polynomial {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
match other.polynomial.len().cmp(&self.polynomial.len()) {
|
||||
Ordering::Equal => {
|
||||
for (field_a, field_b) in
|
||||
self.as_ref().iter().rev().zip(other.as_ref().iter().rev())
|
||||
{
|
||||
eprintln!(
|
||||
"Poly partord: {:02X?} {:02X?} ",
|
||||
self.clone().to_c_array(),
|
||||
other.clone().to_c_array()
|
||||
);
|
||||
|
||||
match field_a
|
||||
.reverse_bits()
|
||||
.partial_cmp(&field_b.reverse_bits())
|
||||
.unwrap()
|
||||
{
|
||||
Ordering::Equal => continue,
|
||||
other => return Some(other),
|
||||
}
|
||||
}
|
||||
Some(Ordering::Equal)
|
||||
}
|
||||
other => Some(other.reverse()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Eq for Polynomial {}
|
||||
|
||||
impl Ord for Polynomial {
|
||||
fn cmp(&self, other: &Self) -> Ordering {
|
||||
match other.polynomial.len().cmp(&self.polynomial.len()) {
|
||||
Ordering::Equal => {
|
||||
for (field_a, field_b) in
|
||||
self.as_ref().iter().rev().zip(other.as_ref().iter().rev())
|
||||
{
|
||||
match field_a.reverse_bits().cmp(&field_b.reverse_bits()) {
|
||||
Ordering::Equal => continue,
|
||||
other => return other,
|
||||
}
|
||||
}
|
||||
Ordering::Equal
|
||||
}
|
||||
other => other.reverse(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn sort_polynomial_array(mut polys: Vec<Polynomial>) -> Result<Vec<Polynomial>> {
|
||||
// Algorithm to sort polynomials
|
||||
// First sorting round
|
||||
// Sorting by degree of polynomial
|
||||
polys.sort();
|
||||
|
||||
Ok(polys)
|
||||
}
|
||||
|
||||
pub const RED_POLY: u128 = 0x87000000_00000000_00000000_00000000;
|
||||
|
||||
pub fn gfmul(poly_a: &Vec<u8>, poly_b: &Vec<u8>, semantic: &str) -> Result<Vec<u8>> {
|
||||
|
|
@ -189,6 +572,7 @@ pub fn coefficient_to_binary(coefficients: Vec<u8>) -> u128 {
|
|||
mod tests {
|
||||
use crate::utils::poly::b64_2_num;
|
||||
use anyhow::Result;
|
||||
use serde_json::json;
|
||||
// Note this useful idiom: importing names from outer (for mod tests) scope.
|
||||
use super::*;
|
||||
|
||||
|
|
@ -256,4 +640,437 @@ mod tests {
|
|||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_add_03() {
|
||||
let json1 = json!([
|
||||
"NeverGonnaGiveYouUpAAA==",
|
||||
"NeverGonnaLetYouDownAA==",
|
||||
"NeverGonnaRunAroundAAA==",
|
||||
"AndDesertYouAAAAAAAAAA=="
|
||||
]);
|
||||
let json2 = json!(["KryptoanalyseAAAAAAAAA==", "DHBWMannheimAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let sum = element2 + element1;
|
||||
|
||||
assert_eq!(
|
||||
sum.to_c_array(),
|
||||
vec![
|
||||
"H1d3GuyA9/0OxeYouUpAAA==",
|
||||
"OZuIncPAGEp4tYouDownAA==",
|
||||
"NeverGonnaRunAroundAAA==",
|
||||
"AndDesertYouAAAAAAAAAA=="
|
||||
]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_add_multiple_zeros() {
|
||||
let json1 = json!([
|
||||
"AAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"AAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"AAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"AAAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let json2 = json!(["AAAAAAAAAAAAAAAAAAAAAA==", "AAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let sum = element2 + element1;
|
||||
|
||||
assert_eq!(sum.to_c_array(), vec!["AAAAAAAAAAAAAAAAAAAAAA==",]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_add_same_element() {
|
||||
let json1 = json!(["NeverGonnaGiveYouUpAAA=="]);
|
||||
let json2 = json!(["NeverGonnaGiveYouUpAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let sum = element2 + element1;
|
||||
|
||||
assert_eq!(sum.to_c_array(), vec!["AAAAAAAAAAAAAAAAAAAAAA==",]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_add_zero() {
|
||||
let json1 = json!([
|
||||
"NeverGonnaGiveYouUpAAA==",
|
||||
"NeverGonnaLetYouDownAA==",
|
||||
"NeverGonnaRunAroundAAA==",
|
||||
"AndDesertYouAAAAAAAAAA=="
|
||||
]);
|
||||
let json2 = json!(["AAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let sum = element2 + element1;
|
||||
|
||||
assert_eq!(
|
||||
sum.to_c_array(),
|
||||
vec![
|
||||
"NeverGonnaGiveYouUpAAA==",
|
||||
"NeverGonnaLetYouDownAA==",
|
||||
"NeverGonnaRunAroundAAA==",
|
||||
"AndDesertYouAAAAAAAAAA=="
|
||||
]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_add_zero_to_zero() {
|
||||
let json1 = json!(["AAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
let json2 = json!(["AAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let sum = element2 + element1;
|
||||
|
||||
assert_eq!(sum.to_c_array(), vec!["AAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_add_short_to_long() {
|
||||
let json1 = json!(["AAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
let json2 = json!([
|
||||
"NeverGonnaGiveYouUpAAA==",
|
||||
"NeverGonnaLetYouDownAA==",
|
||||
"NeverGonnaRunAroundAAA==",
|
||||
"AndDesertYouAAAAAAAAAA=="
|
||||
]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let sum = element2 + element1;
|
||||
|
||||
assert_eq!(
|
||||
sum.to_c_array(),
|
||||
vec![
|
||||
"NeverGonnaGiveYouUpAAA==",
|
||||
"NeverGonnaLetYouDownAA==",
|
||||
"NeverGonnaRunAroundAAA==",
|
||||
"AndDesertYouAAAAAAAAAA=="
|
||||
]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_mul_01() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let json2 = json!(["0AAAAAAAAAAAAAAAAAAAAA==", "IQAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
//eprintln!("{:?}", element1);
|
||||
|
||||
let result = element1 * element2;
|
||||
|
||||
assert_eq!(
|
||||
result.to_c_array(),
|
||||
vec![
|
||||
"MoAAAAAAAAAAAAAAAAAAAA==",
|
||||
"sUgAAAAAAAAAAAAAAAAAAA==",
|
||||
"MbQAAAAAAAAAAAAAAAAAAA==",
|
||||
"AAhAAAAAAAAAAAAAAAAAAA=="
|
||||
]
|
||||
);
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_poly_mul_with_zero() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let json2 = json!(["AAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
//eprintln!("{:?}", element1);
|
||||
|
||||
let result = element1 * element2;
|
||||
|
||||
assert_eq!(result.to_c_array(), vec!["AAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_poly_pow_01() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
|
||||
let result = element1.pow(3);
|
||||
|
||||
assert_eq!(
|
||||
result.to_c_array(),
|
||||
vec![
|
||||
"AkkAAAAAAAAAAAAAAAAAAA==",
|
||||
"DDAAAAAAAAAAAAAAAAAAAA==",
|
||||
"LQIIAAAAAAAAAAAAAAAAAA==",
|
||||
"8AAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACgCQAAAAAAAAAAAAAAAAA==",
|
||||
"AAAMAAAAAAAAAAAAAAAAAA==",
|
||||
"AAAAAgAAAAAAAAAAAAAAAA=="
|
||||
]
|
||||
);
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_poly_pow_with_zero() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
|
||||
let result = element1.pow(0);
|
||||
|
||||
assert_eq!(result.to_c_array(), vec!["gAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_pow_mod_01() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
|
||||
let result = element1.pow(3);
|
||||
|
||||
assert_eq!(
|
||||
result.to_c_array(),
|
||||
vec![
|
||||
"AkkAAAAAAAAAAAAAAAAAAA==",
|
||||
"DDAAAAAAAAAAAAAAAAAAAA==",
|
||||
"LQIIAAAAAAAAAAAAAAAAAA==",
|
||||
"8AAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACgCQAAAAAAAAAAAAAAAAA==",
|
||||
"AAAMAAAAAAAAAAAAAAAAAA==",
|
||||
"AAAAAgAAAAAAAAAAAAAAAA=="
|
||||
]
|
||||
);
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_pow_mod_with_zero() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
|
||||
let result = element1.pow(0);
|
||||
|
||||
assert_eq!(result.to_c_array(), vec!["gAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_poly_div_01() {
|
||||
let element1 =
|
||||
FieldElement::new(BASE64_STANDARD.decode("JAAAAAAAAAAAAAAAAAAAAA==").unwrap());
|
||||
|
||||
let element2 =
|
||||
FieldElement::new(BASE64_STANDARD.decode("wAAAAAAAAAAAAAAAAAAAAA==").unwrap());
|
||||
|
||||
let result = element1 / element2;
|
||||
|
||||
assert_eq!(BASE64_STANDARD.encode(result), "OAAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_poly_div_01() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let json2 = json!(["0AAAAAAAAAAAAAAAAAAAAA==", "IQAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
//eprintln!("{:?}", element1);
|
||||
|
||||
println!("Beginning the new division");
|
||||
let (result, remainder) = element1.div(&element2);
|
||||
|
||||
assert_eq!(
|
||||
result.to_c_array(),
|
||||
vec!["nAIAgCAIAgCAIAgCAIAgCg==", "m85znOc5znOc5znOc5znOQ=="]
|
||||
);
|
||||
assert_eq!(remainder.to_c_array(), vec!["lQNA0DQNA0DQNA0DQNA0Dg=="]);
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_poly_div_larger_div() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let json2 = json!(["0AAAAAAAAAAAAAAAAAAAAA==", "IQAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
//eprintln!("{:?}", element1);
|
||||
|
||||
println!("Beginning the new division");
|
||||
let (result, remainder) = element2.div(&element1);
|
||||
|
||||
assert_eq!(result.to_c_array(), vec!["AAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
assert_eq!(
|
||||
remainder.to_c_array(),
|
||||
vec!["0AAAAAAAAAAAAAAAAAAAAA==", "IQAAAAAAAAAAAAAAAAAAAA=="]
|
||||
);
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_poly_div_eqdeg() {
|
||||
let json1 = json!(["JAAAAAAAAAAAAAAAAAAAAA==", "wAAAAAAAAAAAAAAAAAAAAA==",]);
|
||||
let json2 = json!(["0AAAAAAAAAAAAAAAAAAAAA==", "IQAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let (result, remainder) = element2.div(&element1);
|
||||
|
||||
eprintln!("{:02X?}", (&result, &remainder));
|
||||
|
||||
assert!(!result.is_zero());
|
||||
assert!(!remainder.is_zero());
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_poly_div_eqdeg_02() {
|
||||
let json1 = json!(["JAAAAAAAAAAAAAAAAAAAAA==", "wAAAAAAAAAAAAAAAAAAAAA==",]);
|
||||
let json2 = json!(["KryptoanalyseAAAAAAAAA==", "DHBWMannheimAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let (result, remainder) = element2.div(&element1);
|
||||
|
||||
eprintln!("{:02X?}", (&result, &remainder));
|
||||
|
||||
assert!(!result.is_zero());
|
||||
assert!(!remainder.is_zero());
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_poly_powmod_01() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let json2 = json!(["KryptoanalyseAAAAAAAAA==", "DHBWMannheimAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let modulus: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let result = element1.pow_mod(1000, modulus);
|
||||
|
||||
eprintln!("Result is: {:02X?}", result);
|
||||
assert_eq!(result.to_c_array(), vec!["oNXl5P8xq2WpUTP92u25zg=="]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_poly_powmod_k1() {
|
||||
let json1 = json!(["JAAAAAAAAAAAAAAAAAAAAA==",]);
|
||||
let json2 = json!(["KryptoanalyseAAAAAAAAA==", "DHBWMannheimAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let modulus: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let result = element1.pow_mod(1, modulus);
|
||||
|
||||
eprintln!("Result is: {:02X?}", result);
|
||||
assert_eq!(result.to_c_array(), vec!["JAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_poly_powmod_k0_special() {
|
||||
let json1 = json!(["NeverGonnaGiveYouUpAAA=="]);
|
||||
let json2 = json!(["NeverGonnaGiveYouUpAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let modulus: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let result = element1.pow_mod(0, modulus);
|
||||
|
||||
eprintln!("Result is: {:02X?}", result);
|
||||
|
||||
assert_eq!(result.to_c_array(), vec!["gAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_poly_powmod_k0() {
|
||||
let json1 = json!(["JAAAAAAAAAAAAAAAAAAAAA==",]);
|
||||
let json2 = json!(["KryptoanalyseAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let modulus: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let result = element1.pow_mod(0, modulus);
|
||||
|
||||
eprintln!("Result is: {:02X?}", result);
|
||||
assert_eq!(result.to_c_array(), vec!["gAAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_pow_mod_10mill() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let json2 = json!(["KryptoanalyseAAAAAAAAA==", "DHBWMannheimAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let modulus: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let result = element1.pow_mod(10000000, modulus);
|
||||
|
||||
assert!(!result.is_zero())
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_poly_monic() {
|
||||
let json1 = json!([
|
||||
"NeverGonnaGiveYouUpAAA==",
|
||||
"NeverGonnaLetYouDownAA==",
|
||||
"NeverGonnaRunAroundAAA==",
|
||||
"AndDesertYouAAAAAAAAAA=="
|
||||
]);
|
||||
let expected = json!([
|
||||
"edY47onJ4MtCENDTHG/sZw==",
|
||||
"oaXjCKnceBIxSavZ9eFT8w==",
|
||||
"1Ial5rAJGOucIdUe3zh5bw==",
|
||||
"gAAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
|
||||
let result = element1.monic();
|
||||
|
||||
assert_eq!(json!(result.to_c_array()), expected);
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue