Add basic pfmath functionality #13
4 changed files with 183 additions and 16 deletions
|
|
@ -11,6 +11,7 @@ use tasks01::{
|
|||
gcm::{gcm_decrypt, gcm_encrypt},
|
||||
gfmul::gfmul_task,
|
||||
pad_oracle::padding_oracle,
|
||||
pfmath::gfpoly_add,
|
||||
poly2block::poly2block,
|
||||
sea128::sea128,
|
||||
xex::{self, fde_xex},
|
||||
|
|
@ -83,6 +84,12 @@ pub fn task_deploy(testcase: &Testcase) -> Result<Value> {
|
|||
|
||||
Ok(json)
|
||||
}
|
||||
"gfpoly_add" => {
|
||||
let result = gfpoly_add(args)?;
|
||||
let json = json!({"plaintext" : result.to_c_array()});
|
||||
|
||||
Ok(json)
|
||||
}
|
||||
_ => Err(anyhow!(
|
||||
"Fatal. No compatible action found. Json data was {:?}. Arguments were; {:?}",
|
||||
testcase,
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@ pub mod block2poly;
|
|||
pub mod gcm;
|
||||
pub mod gfmul;
|
||||
pub mod pad_oracle;
|
||||
pub mod pfmath;
|
||||
pub mod poly2block;
|
||||
pub mod sea128;
|
||||
pub mod xex;
|
||||
|
|
|
|||
15
src/tasks/tasks01/pfmath.rs
Normal file
15
src/tasks/tasks01/pfmath.rs
Normal file
|
|
@ -0,0 +1,15 @@
|
|||
use anyhow::Result;
|
||||
use base64::{prelude::BASE64_STANDARD, Engine};
|
||||
use serde_json::Value;
|
||||
|
||||
use crate::utils::field::Polynomial;
|
||||
|
||||
pub fn gfpoly_add(args: &Value) -> Result<Polynomial> {
|
||||
let poly_a = Polynomial::from_c_array(&args["A"].clone());
|
||||
|
||||
let poly_b = Polynomial::from_c_array(&args["B"].clone());
|
||||
|
||||
let result = poly_a + poly_b;
|
||||
|
||||
Ok(result)
|
||||
}
|
||||
|
|
@ -58,14 +58,12 @@ impl Polynomial {
|
|||
|
||||
pub fn pow(&self, mut exponent: u128) -> Polynomial {
|
||||
if exponent == 0 {
|
||||
// Return polynomial with coefficient 1
|
||||
return Polynomial::new(vec![FieldElement::new(vec![1])]);
|
||||
return Polynomial::new(vec![FieldElement::new(vec![0])]);
|
||||
}
|
||||
|
||||
let base = self.clone();
|
||||
let mut result = base.clone();
|
||||
exponent -= 1; // Subtract 1 because we already set result to base
|
||||
|
||||
exponent -= 1;
|
||||
while exponent > 0 {
|
||||
result = result * base.clone();
|
||||
exponent -= 1;
|
||||
|
|
@ -73,16 +71,90 @@ impl Polynomial {
|
|||
|
||||
result
|
||||
}
|
||||
/*
|
||||
pub fn to_b64(&self) -> String {
|
||||
let mut output: Vec<String> = vec![];
|
||||
for coeff in self.polynomial {
|
||||
output.push(BASE64_STANDARD.encode(coeff));
|
||||
|
||||
pub fn pow_mod(mut self, mut exponent: u128, modulus: Polynomial) -> Polynomial {
|
||||
let mut result: Polynomial = Polynomial::new(vec![FieldElement::new(
|
||||
polynomial_2_block(vec![0], "gcm").unwrap(),
|
||||
)]);
|
||||
|
||||
eprintln!("Initial result: {:?}", result);
|
||||
while exponent > 0 {
|
||||
eprintln!("Current exponent: {:02X}", exponent);
|
||||
if exponent & 1 == 1 {
|
||||
let temp = &self * &result;
|
||||
eprintln!("After multiplication: {:?}", temp);
|
||||
result = temp.div(&modulus).1;
|
||||
eprintln!("After mod: {:?}", result);
|
||||
}
|
||||
let temp_square = &self * &self;
|
||||
eprintln!("After squaring: {:?}", temp_square);
|
||||
self = temp_square.div(&modulus).1;
|
||||
eprintln!("After mod: {:?}", self);
|
||||
exponent >>= 1;
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
output
|
||||
// Returns (quotient, remainder)
|
||||
pub fn div(self, rhs: &Self) -> (Self, Self) {
|
||||
// Div by zero check ommitted since data is guaranteed to be non 0
|
||||
|
||||
let mut remainder = self.clone();
|
||||
let divisor = rhs;
|
||||
let dividend_deg = remainder.polynomial.len() - 1;
|
||||
let divisor_deg = divisor.polynomial.len() - 1;
|
||||
|
||||
if dividend_deg < divisor_deg {
|
||||
return (
|
||||
Polynomial::new(vec![FieldElement::new(
|
||||
polynomial_2_block(vec![0; 16], "gcm").unwrap(),
|
||||
)]),
|
||||
remainder,
|
||||
);
|
||||
}
|
||||
|
||||
let mut quotient_coeffs =
|
||||
vec![
|
||||
FieldElement::new(polynomial_2_block(vec![0; 16], "gcm").unwrap());
|
||||
dividend_deg - divisor_deg + 1
|
||||
];
|
||||
|
||||
while remainder.polynomial.len() >= divisor.polynomial.len() {
|
||||
let deg_diff = remainder.polynomial.len() - divisor.polynomial.len();
|
||||
|
||||
let leading_dividend = remainder.polynomial.last().unwrap();
|
||||
let leading_divisor = divisor.polynomial.last().unwrap();
|
||||
let quot_coeff = leading_dividend / leading_divisor;
|
||||
|
||||
quotient_coeffs[deg_diff] = quot_coeff.clone();
|
||||
|
||||
let mut subtrahend =
|
||||
vec![FieldElement::new(polynomial_2_block(vec![0; 16], "gcm").unwrap()); deg_diff];
|
||||
subtrahend.extend(
|
||||
divisor
|
||||
.polynomial
|
||||
.iter()
|
||||
.map(|x| x.clone() * quot_coeff.clone()),
|
||||
);
|
||||
let subtrahend_poly = Polynomial::new(subtrahend);
|
||||
|
||||
remainder = remainder + subtrahend_poly;
|
||||
|
||||
while !remainder.polynomial.is_empty()
|
||||
&& remainder
|
||||
.polynomial
|
||||
.last()
|
||||
.unwrap()
|
||||
.as_ref()
|
||||
.iter()
|
||||
.all(|&x| x == 0)
|
||||
{
|
||||
remainder.polynomial.pop();
|
||||
}
|
||||
}
|
||||
|
||||
(Polynomial::new(quotient_coeffs), remainder)
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
impl Clone for Polynomial {
|
||||
|
|
@ -318,15 +390,20 @@ impl Div for &FieldElement {
|
|||
self.clone() * rhs_inv
|
||||
}
|
||||
}
|
||||
/*
|
||||
//TODO: Not yet ready
|
||||
impl Rem for FieldElement {
|
||||
fn rem(self, rhs: Self) -> Self::Output {
|
||||
|
||||
/*
|
||||
impl Rem for FieldElement {
|
||||
type Output = Self;
|
||||
fn rem(self, rhs: Self) -> Self::Output {
|
||||
let result: FieldElement = self.field_element;
|
||||
|
||||
while self.field_element[15] != 0x00 {
|
||||
self.field_element
|
||||
}
|
||||
todo!();
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
impl BitXor for FieldElement {
|
||||
fn bitxor(self, rhs: Self) -> Self::Output {
|
||||
|
|
@ -642,6 +719,32 @@ mod tests {
|
|||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_pow_mod_01() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
|
||||
let result = element1.pow(3);
|
||||
|
||||
assert_eq!(
|
||||
result.to_c_array(),
|
||||
vec![
|
||||
"AkkAAAAAAAAAAAAAAAAAAA==",
|
||||
"DDAAAAAAAAAAAAAAAAAAAA==",
|
||||
"LQIIAAAAAAAAAAAAAAAAAA==",
|
||||
"8AAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACgCQAAAAAAAAAAAAAAAAA==",
|
||||
"AAAMAAAAAAAAAAAAAAAAAA==",
|
||||
"AAAAAgAAAAAAAAAAAAAAAA=="
|
||||
]
|
||||
);
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_poly_div_01() {
|
||||
let element1 =
|
||||
|
|
@ -654,4 +757,45 @@ mod tests {
|
|||
|
||||
assert_eq!(BASE64_STANDARD.encode(result), "OAAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_poly_div_01() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let json2 = json!(["0AAAAAAAAAAAAAAAAAAAAA==", "IQAAAAAAAAAAAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let element2: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
//eprintln!("{:?}", element1);
|
||||
|
||||
println!("Beginning the new division");
|
||||
let (result, remainder) = element1.div(&element2);
|
||||
|
||||
assert_eq!(
|
||||
result.to_c_array(),
|
||||
vec!["nAIAgCAIAgCAIAgCAIAgCg==", "m85znOc5znOc5znOc5znOQ=="]
|
||||
);
|
||||
assert_eq!(remainder.to_c_array(), vec!["lQNA0DQNA0DQNA0DQNA0Dg=="]);
|
||||
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_field_poly_powmod_01() {
|
||||
let json1 = json!([
|
||||
"JAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"wAAAAAAAAAAAAAAAAAAAAA==",
|
||||
"ACAAAAAAAAAAAAAAAAAAAA=="
|
||||
]);
|
||||
let json2 = json!(["KryptoanalyseAAAAAAAAA==", "DHBWMannheimAAAAAAAAAA=="]);
|
||||
let element1: Polynomial = Polynomial::from_c_array(&json1);
|
||||
let modulus: Polynomial = Polynomial::from_c_array(&json2);
|
||||
|
||||
let result = element1.pow_mod(1000, modulus);
|
||||
|
||||
eprintln!("Result is: {:02X?}", result);
|
||||
assert_eq!(result.to_c_array(), vec!["XrEhmKuat+Glt5zZWtMo6g=="]);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue