kauma/src/utils/field.rs

1049 lines
31 KiB
Rust

use std::ops::{Add, BitXor, Div, Mul, Sub};
use anyhow::{anyhow, Ok, Result};
use base64::prelude::*;
use serde_json::Value;
use crate::utils::poly::polynomial_2_block;
use super::{math::xor_bytes, poly::gfmul};
#[derive(Debug)]
pub struct Polynomial {
polynomial: Vec<FieldElement>,
}
impl Polynomial {
pub const fn new(polynomial: Vec<FieldElement>) -> Self {
Self { polynomial }
}
pub fn from_c_array(array: &Value) -> Self {
let mut polynomial: Vec<FieldElement> = vec![];
let c_array: Vec<String> = array
.as_array()
.expect("Input is not an array")
.iter()
.map(|x| {
x.as_str()
.expect("Array element is not a string")
.to_string()
})
.collect();
eprintln!("{:?}", c_array);
for coefficient in c_array {
polynomial.push(FieldElement::new(
BASE64_STANDARD
.decode(coefficient)
.expect("Error on poly decode:"),
));
}
Self { polynomial }
}
pub fn to_c_array(self) -> Vec<String> {
let mut output: Vec<String> = vec![];
for coeff in self.polynomial {
output.push(BASE64_STANDARD.encode(coeff));
}
output
}
pub fn pow(&self, mut exponent: u128) -> Polynomial {
if exponent == 0 {
return Polynomial::new(vec![FieldElement::new(
polynomial_2_block(vec![0], "gcm").unwrap(),
)]);
}
let base = self.clone();
let mut result = base.clone();
exponent -= 1;
while exponent > 0 {
result = result * base.clone();
exponent -= 1;
}
result
}
pub fn pow_mod(mut self, mut exponent: u128, modulus: Polynomial) -> Polynomial {
let mut result: Polynomial = Polynomial::new(vec![FieldElement::new(
polynomial_2_block(vec![0], "gcm").unwrap(),
)]);
if exponent == 1 {
return self;
}
if exponent == 0 {
Polynomial::new(vec![FieldElement::new(
polynomial_2_block(vec![1], "gcm").unwrap(),
)])
.div(&modulus)
.1;
}
//eprintln!("Initial result: {:?}", result);
while exponent > 0 {
//eprintln!("Current exponent: {:02X}", exponent);
if exponent & 1 == 1 {
let temp = &self * &result;
//eprintln!("After multiplication: {:?}", temp);
result = temp.div(&modulus).1;
//eprintln!("After mod: {:?}", result);
}
let temp_square = &self * &self;
//eprintln!("After squaring: {:?}", temp_square);
self = temp_square.div(&modulus).1;
//eprintln!("After mod: {:?}", self);
exponent >>= 1;
}
result
}
// Returns (quotient, remainder)
pub fn div(self, rhs: &Self) -> (Self, Self) {
// Div by zero check ommitted since data is guaranteed to be non 0
eprintln!("{:?}, {:?}", self.polynomial.len(), rhs.polynomial.len());
if self.polynomial.len() < rhs.polynomial.len() {
return (Polynomial::new(vec![FieldElement::new(vec![0; 16])]), self);
}
let mut remainder = self.clone();
let divisor = rhs;
let dividend_deg = remainder.polynomial.len() - 1;
let divisor_deg = divisor.polynomial.len() - 1;
if dividend_deg < divisor_deg {
return (
Polynomial::new(vec![FieldElement::new(
polynomial_2_block(vec![0; 16], "gcm").unwrap(),
)]),
remainder,
);
}
let mut quotient_coeffs =
vec![
FieldElement::new(polynomial_2_block(vec![0; 16], "gcm").unwrap());
dividend_deg - divisor_deg + 1
];
while remainder.polynomial.len() >= divisor.polynomial.len() {
let deg_diff = remainder.polynomial.len() - divisor.polynomial.len();
let leading_dividend = remainder.polynomial.last().unwrap();
let leading_divisor = divisor.polynomial.last().unwrap();
let quot_coeff = leading_dividend / leading_divisor;
quotient_coeffs[deg_diff] = quot_coeff.clone();
let mut subtrahend =
vec![FieldElement::new(polynomial_2_block(vec![0; 16], "gcm").unwrap()); deg_diff];
subtrahend.extend(
divisor
.polynomial
.iter()
.map(|x| x.clone() * quot_coeff.clone()),
);
let subtrahend_poly = Polynomial::new(subtrahend);
remainder = remainder + subtrahend_poly;
while !remainder.polynomial.is_empty()
&& remainder
.polynomial
.last()
.unwrap()
.as_ref()
.iter()
.all(|&x| x == 0)
{
remainder.polynomial.pop();
}
}
if remainder.is_empty() {
remainder = Polynomial::new(vec![FieldElement::new(vec![0; 16])]);
}
(Polynomial::new(quotient_coeffs), remainder)
}
fn is_zero(&self) -> bool {
for field_element in &self.polynomial {
if !field_element.is_zero() {
return false;
}
}
true
}
}
impl Clone for Polynomial {
fn clone(&self) -> Self {
Polynomial {
polynomial: self.polynomial.clone(),
}
}
}
impl Mul for Polynomial {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
if self.is_zero() || rhs.is_zero() {
return Polynomial::new(vec![FieldElement::new(vec![0; 16])]);
}
let mut polynomial: Vec<FieldElement> =
vec![FieldElement::new(vec![0; 16]); self.polynomial.len() + rhs.polynomial.len() - 1];
for i in 0..self.polynomial.len() {
for j in 0..rhs.polynomial.len() {
polynomial[i + j] = &polynomial[i + j]
+ &(self.polynomial.get(i).unwrap() * rhs.polynomial.get(j).unwrap());
}
}
Polynomial::new(polynomial)
}
}
impl Mul for &Polynomial {
type Output = Polynomial;
fn mul(self, rhs: Self) -> Self::Output {
if self.is_zero() || rhs.is_zero() {
return Polynomial::new(vec![FieldElement::new(vec![0])]);
}
let mut polynomial: Vec<FieldElement> =
vec![FieldElement::new(vec![0; 16]); self.polynomial.len() + rhs.polynomial.len() - 1];
for i in 0..self.polynomial.len() {
for j in 0..rhs.polynomial.len() {
polynomial[i + j] = &polynomial[i + j]
+ &(self.polynomial.get(i).unwrap() * rhs.polynomial.get(j).unwrap());
}
}
Polynomial::new(polynomial)
}
}
impl Add for Polynomial {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let mut polynomial: Vec<FieldElement>;
if self.polynomial.len() > rhs.polynomial.len() {
polynomial = self.polynomial.clone();
for i in 0..rhs.polynomial.len() {
polynomial[i] = polynomial[i].clone() + rhs.polynomial[i].clone();
}
} else {
polynomial = rhs.polynomial.clone();
for i in 0..self.polynomial.len() {
polynomial[i] = polynomial[i].clone() + self.polynomial[i].clone();
}
}
for i in (0..polynomial.len() - 1).rev() {
if polynomial[i].is_zero() {
polynomial.pop();
}
}
Polynomial::new(polynomial)
}
}
// Helper implementation for subtraction
impl Sub for &FieldElement {
type Output = FieldElement;
fn sub(self, rhs: Self) -> FieldElement {
// In a field of characteristic 2, addition and subtraction are the same operation (XOR)
self + rhs
}
}
// Helper trait for checking emptiness
trait IsEmpty {
fn is_empty(&self) -> bool;
}
impl IsEmpty for Polynomial {
fn is_empty(&self) -> bool {
self.polynomial.is_empty()
}
}
impl AsRef<[FieldElement]> for Polynomial {
fn as_ref(&self) -> &[FieldElement] {
&self.polynomial
}
}
#[derive(Debug)]
pub struct FieldElement {
field_element: Vec<u8>,
}
impl FieldElement {
pub const IRREDUCIBLE_POLYNOMIAL: [u8; 17] = [
87, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 01,
];
pub const fn new(field_element: Vec<u8>) -> Self {
Self { field_element }
}
pub fn mul(&self, poly_a: Vec<u8>, poly_b: Vec<u8>) -> Result<Vec<u8>> {
gfmul(&poly_a, &poly_b, "gcm")
}
pub fn to_b64(&self) -> String {
BASE64_STANDARD.encode(&self.field_element)
}
pub fn pow(&self, mut exponent: u128) -> FieldElement {
if exponent == 0 {
// Return polynomial with coefficient 1
return FieldElement::new(vec![1]);
}
let base = self.clone();
let mut result = base.clone();
exponent -= 1; // Subtract 1 because we already set result to base
while exponent > 0 {
result = result * base.clone();
exponent -= 1;
}
result
}
pub fn inv(mut self) -> Self {
let mut inverser: u128 = 0xfffffffffffffffffffffffffffffffe;
let mut inverse: Vec<u8> = polynomial_2_block(vec![0], "gcm").unwrap();
//eprintln!("Inverse start {:02X?}", inverse);
while inverser > 0 {
//eprintln!("{:02X}", inverser);
if inverser & 1 == 1 {
inverse = gfmul(&self.field_element, &inverse, "gcm").unwrap();
}
inverser >>= 1;
self.field_element = gfmul(&self.field_element, &self.field_element, "gcm")
.expect("Error in sqrmul sqr");
}
//eprintln!("Inverse rhs {:?}", inverse);
FieldElement::new(inverse)
}
fn is_zero(&self) -> bool {
self.field_element.iter().all(|&x| x == 0x00)
}
}
impl Mul for FieldElement {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
FieldElement::new(
gfmul(&self.field_element, &rhs.field_element, "gcm")
.expect("Error during multiplication"),
)
}
}
impl Mul for &FieldElement {
type Output = FieldElement;
fn mul(self, rhs: &FieldElement) -> FieldElement {
FieldElement::new(
gfmul(&self.field_element, &rhs.field_element, "gcm")
.expect("Error during multiplication"),
)
}
}
impl Add for FieldElement {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
FieldElement::new(
xor_bytes(&self.field_element, rhs.field_element).expect("Error in poly add"),
)
}
}
impl Add for &FieldElement {
type Output = FieldElement;
fn add(self, rhs: Self) -> Self::Output {
FieldElement::new(
xor_bytes(&self.field_element, rhs.field_element.clone()).expect("Error in poly add"),
)
}
}
impl AsRef<[u8]> for FieldElement {
fn as_ref(&self) -> &[u8] {
&self.field_element.as_ref()
}
}
impl Clone for FieldElement {
fn clone(&self) -> Self {
FieldElement {
field_element: self.field_element.clone(),
}
}
}
impl BitXor for FieldElement {
type Output = Self;
fn bitxor(self, rhs: Self) -> Self::Output {
let result: Vec<u8> = self
.field_element
.iter()
.zip(rhs.field_element.iter())
.map(|(&x1, &x2)| x1 ^ x2)
.collect();
FieldElement::new(result)
}
}
impl Div for FieldElement {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
eprintln!("RHS in div{:02X?}", &rhs);
let inverse = rhs.inv();
eprintln!("Inverse in div{:02X?}", inverse);
self.clone() * inverse
}
}
impl Div for &FieldElement {
type Output = FieldElement;
fn div(self, rhs: Self) -> Self::Output {
// First clone and invert the divisor (rhs)
let rhs_inv = rhs.clone().inv();
// Multiply original number by the inverse
self.clone() * rhs_inv
}
}
/*
impl Rem for FieldElement {
type Output = Self;
fn rem(self, rhs: Self) -> Self::Output {
let result: FieldElement = self.field_element;
while self.field_element[15] != 0x00 {
self.field_element
}
todo!();
}
}
*/
/*
impl BitXor for FieldElement {
fn bitxor(self, rhs: Self) -> Self::Output {
FieldElement
}
}
*/
/*
impl From<Vec<u8>> for FieldElement {
fn from(item: Vec<u8>) -> Self {
FieldElement { bytes: item }
}
}
*/
#[derive(Debug)]
pub struct ByteArray(pub Vec<u8>);
impl ByteArray {
pub fn left_shift(&mut self, semantic: &str) -> Result<u8> {
match semantic {
"xex" => {
let mut carry = 0u8;
for byte in self.0.iter_mut() {
let new_carry = *byte >> 7;
*byte = (*byte << 1) | carry;
carry = new_carry;
}
Ok(carry)
}
"gcm" => {
let mut carry = 0u8;
for byte in self.0.iter_mut() {
let new_carry = *byte & 1;
*byte = (*byte >> 1) | (carry << 7);
carry = new_carry;
}
Ok(carry)
}
_ => Err(anyhow!("Failure in lsh. No compatible action found")),
}
}
pub fn left_shift_reduce(&mut self, semantic: &str) {
match semantic {
"xex" => {
let alpha_poly: Vec<u8> = base64::prelude::BASE64_STANDARD
.decode("AgAAAAAAAAAAAAAAAAAAAA==")
.expect("Decode failed");
self.0 = gfmul(&self.0, &alpha_poly, "xex").unwrap();
}
"gcm" => {
let alpha_poly: Vec<u8> = base64::prelude::BASE64_STANDARD
.decode("AgAAAAAAAAAAAAAAAAAAAA==")
.expect("Decode failed");
self.0 = gfmul(&self.0, &alpha_poly, "gcm").unwrap();
}
_ => {}
}
}
pub fn right_shift(&mut self, semantic: &str) -> Result<u8> {
match semantic {
"xex" => {
let mut carry = 0u8;
for byte in self.0.iter_mut().rev() {
let new_carry = *byte & 1;
*byte = (*byte >> 1) | (carry << 7);
carry = new_carry;
}
Ok(carry)
}
"gcm" => {
let mut carry = 0u8;
for byte in self.0.iter_mut().rev() {
let new_carry = *byte & 1;
*byte = (*byte << 1) | carry;
carry = new_carry;
}
Ok(carry)
}
_ => Err(anyhow!("Failure in rsh. No valid semantic found")),
}
}
pub fn xor_byte_arrays(&mut self, vec2: &ByteArray) {
self.0
.iter_mut()
.zip(vec2.0.iter())
.for_each(|(x1, x2)| *x1 ^= *x2);
}
pub fn LSB_is_one(&self) -> bool {
(self.0.first().unwrap() & 1) == 1
}
pub fn msb_is_one(&self) -> bool {
(self.0.last().unwrap() & 1) == 1
}
pub fn is_empty(&self) -> bool {
for i in self.0.iter() {
if *i != 0 {
return false;
}
}
true
}
pub fn reverse_bits_in_bytevec(&mut self) {
self.0 = self.0.iter_mut().map(|byte| byte.reverse_bits()).collect();
}
}
#[cfg(test)]
mod tests {
use super::*;
use serde_json::json;
#[test]
fn test_byte_array_shift1() {
let mut byte_array: ByteArray = ByteArray(vec![0x00, 0x01]);
let shifted_array: ByteArray = ByteArray(vec![0x00, 0x02]);
byte_array.left_shift("xex").unwrap();
assert_eq!(byte_array.0, shifted_array.0);
}
#[test]
fn test_byte_array_shift2() {
let mut byte_array: ByteArray = ByteArray(vec![0xFF, 0x00]);
let shifted_array: ByteArray = ByteArray(vec![0xFE, 0x01]);
byte_array.left_shift("xex").unwrap();
assert_eq!(
byte_array.0, shifted_array.0,
"Failure: Shifted array was: {:?}",
byte_array.0
);
}
#[test]
fn test_byte_array_shift1_gcm() {
let mut byte_array: ByteArray = ByteArray(vec![0xFF, 0x00]);
let shifted_array: ByteArray = ByteArray(vec![0x7F, 0x80]);
byte_array.left_shift("gcm").unwrap();
assert_eq!(
byte_array.0, shifted_array.0,
"Failure: Shifted array was: {:02X?}",
byte_array.0
);
}
#[test]
fn test_byte_array_shift1_right_gcm() {
let mut byte_array: ByteArray = ByteArray(vec![0xFF, 0x00]);
let shifted_array: ByteArray = ByteArray(vec![0xFE, 0x00]);
byte_array.right_shift("gcm").unwrap();
assert_eq!(
byte_array.0, shifted_array.0,
"Failure: Shifted array was: {:02X?}",
byte_array.0
);
}
#[test]
fn test_byte_array_shift_right() {
let mut byte_array: ByteArray = ByteArray(vec![0x02]);
let shifted_array: ByteArray = ByteArray(vec![0x01]);
byte_array.right_shift("xex").unwrap();
assert_eq!(
byte_array.0, shifted_array.0,
"Failure: Shifted array was: {:?}",
byte_array.0
);
}
#[test]
fn test_lsb_one() {
let byte_array: ByteArray = ByteArray(vec![0x00, 0xFF]);
assert!(!byte_array.LSB_is_one());
let byte_array2: ByteArray = ByteArray(vec![0x02, 0xFF]);
assert!(!byte_array2.LSB_is_one());
let byte_array3: ByteArray = ByteArray(vec![0xFF, 0x00]);
assert!(byte_array3.LSB_is_one());
}
#[test]
fn test_byte_xor() {
let mut byte_array: ByteArray = ByteArray(vec![0x25, 0x25]);
let byte_array2: ByteArray = ByteArray(vec![0x55, 0x55]);
byte_array.xor_byte_arrays(&byte_array2);
assert_eq!(byte_array.0, vec![0x70, 0x70]);
}
#[test]
fn test_byte_xor2() {
let mut byte_array: ByteArray = ByteArray(vec![0x00, 0x00]);
let byte_array2: ByteArray = ByteArray(vec![0x55, 0x55]);
byte_array.xor_byte_arrays(&byte_array2);
assert_eq!(byte_array.0, vec![0x55, 0x55]);
}
#[test]
fn test_field_add_01() {
let element1: FieldElement =
FieldElement::new(BASE64_STANDARD.decode("NeverGonnaGiveYouUpAAA==").unwrap());
let element2: FieldElement =
FieldElement::new(BASE64_STANDARD.decode("KryptoanalyseAAAAAAAAA==").unwrap());
let sum = element2 + element1;
assert_eq!(BASE64_STANDARD.encode(sum), "H1d3GuyA9/0OxeYouUpAAA==");
}
#[test]
fn test_field_add_02() {
let element1: FieldElement =
FieldElement::new(BASE64_STANDARD.decode("NeverGonnaLetYouDownAA==").unwrap());
let element2: FieldElement =
FieldElement::new(BASE64_STANDARD.decode("DHBWMannheimAAAAAAAAAA==").unwrap());
let sum = element2 + element1;
assert_eq!(BASE64_STANDARD.encode(sum), "OZuIncPAGEp4tYouDownAA==");
}
#[test]
fn test_field_add_03() {
let json1 = json!([
"NeverGonnaGiveYouUpAAA==",
"NeverGonnaLetYouDownAA==",
"NeverGonnaRunAroundAAA==",
"AndDesertYouAAAAAAAAAA=="
]);
let json2 = json!(["KryptoanalyseAAAAAAAAA==", "DHBWMannheimAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
let sum = element2 + element1;
assert_eq!(
sum.to_c_array(),
vec![
"H1d3GuyA9/0OxeYouUpAAA==",
"OZuIncPAGEp4tYouDownAA==",
"NeverGonnaRunAroundAAA==",
"AndDesertYouAAAAAAAAAA=="
]
);
}
#[test]
fn test_field_add_multiple_zeros() {
let json1 = json!([
"AAAAAAAAAAAAAAAAAAAAAA==",
"AAAAAAAAAAAAAAAAAAAAAA==",
"AAAAAAAAAAAAAAAAAAAAAA==",
"AAAAAAAAAAAAAAAAAAAAAA=="
]);
let json2 = json!(["AAAAAAAAAAAAAAAAAAAAAA==", "AAAAAAAAAAAAAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
let sum = element2 + element1;
assert_eq!(sum.to_c_array(), vec!["AAAAAAAAAAAAAAAAAAAAAA==",]);
}
#[test]
fn test_field_add_same_element() {
let json1 = json!(["NeverGonnaGiveYouUpAAA=="]);
let json2 = json!(["NeverGonnaGiveYouUpAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
let sum = element2 + element1;
assert_eq!(sum.to_c_array(), vec!["AAAAAAAAAAAAAAAAAAAAAA==",]);
}
#[test]
fn test_field_add_zero() {
let json1 = json!([
"NeverGonnaGiveYouUpAAA==",
"NeverGonnaLetYouDownAA==",
"NeverGonnaRunAroundAAA==",
"AndDesertYouAAAAAAAAAA=="
]);
let json2 = json!(["AAAAAAAAAAAAAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
let sum = element2 + element1;
assert_eq!(
sum.to_c_array(),
vec![
"NeverGonnaGiveYouUpAAA==",
"NeverGonnaLetYouDownAA==",
"NeverGonnaRunAroundAAA==",
"AndDesertYouAAAAAAAAAA=="
]
);
}
#[test]
fn test_field_add_zero_to_zero() {
let json1 = json!(["AAAAAAAAAAAAAAAAAAAAAA=="]);
let json2 = json!(["AAAAAAAAAAAAAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
let sum = element2 + element1;
assert_eq!(sum.to_c_array(), vec!["AAAAAAAAAAAAAAAAAAAAAA=="]);
}
#[test]
fn test_field_add_short_to_long() {
let json1 = json!(["AAAAAAAAAAAAAAAAAAAAAA=="]);
let json2 = json!([
"NeverGonnaGiveYouUpAAA==",
"NeverGonnaLetYouDownAA==",
"NeverGonnaRunAroundAAA==",
"AndDesertYouAAAAAAAAAA=="
]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
let sum = element2 + element1;
assert_eq!(
sum.to_c_array(),
vec![
"NeverGonnaGiveYouUpAAA==",
"NeverGonnaLetYouDownAA==",
"NeverGonnaRunAroundAAA==",
"AndDesertYouAAAAAAAAAA=="
]
);
}
#[test]
fn test_field_mul_01() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let json2 = json!(["0AAAAAAAAAAAAAAAAAAAAA==", "IQAAAAAAAAAAAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
//eprintln!("{:?}", element1);
let result = element1 * element2;
assert_eq!(
result.to_c_array(),
vec![
"MoAAAAAAAAAAAAAAAAAAAA==",
"sUgAAAAAAAAAAAAAAAAAAA==",
"MbQAAAAAAAAAAAAAAAAAAA==",
"AAhAAAAAAAAAAAAAAAAAAA=="
]
);
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_poly_mul_with_zero() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let json2 = json!(["AAAAAAAAAAAAAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
//eprintln!("{:?}", element1);
let result = element1 * element2;
assert_eq!(result.to_c_array(), vec!["AAAAAAAAAAAAAAAAAAAAAA=="]);
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_poly_pow_01() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let result = element1.pow(3);
assert_eq!(
result.to_c_array(),
vec![
"AkkAAAAAAAAAAAAAAAAAAA==",
"DDAAAAAAAAAAAAAAAAAAAA==",
"LQIIAAAAAAAAAAAAAAAAAA==",
"8AAAAAAAAAAAAAAAAAAAAA==",
"ACgCQAAAAAAAAAAAAAAAAA==",
"AAAMAAAAAAAAAAAAAAAAAA==",
"AAAAAgAAAAAAAAAAAAAAAA=="
]
);
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_poly_pow_with_zero() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let result = element1.pow(0);
assert_eq!(result.to_c_array(), vec!["gAAAAAAAAAAAAAAAAAAAAA=="]);
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_field_pow_mod_01() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let result = element1.pow(3);
assert_eq!(
result.to_c_array(),
vec![
"AkkAAAAAAAAAAAAAAAAAAA==",
"DDAAAAAAAAAAAAAAAAAAAA==",
"LQIIAAAAAAAAAAAAAAAAAA==",
"8AAAAAAAAAAAAAAAAAAAAA==",
"ACgCQAAAAAAAAAAAAAAAAA==",
"AAAMAAAAAAAAAAAAAAAAAA==",
"AAAAAgAAAAAAAAAAAAAAAA=="
]
);
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_field_pow_mod_with_zero() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let result = element1.pow(0);
assert_eq!(result.to_c_array(), vec!["gAAAAAAAAAAAAAAAAAAAAA=="]);
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_field_pow_mod_10mill() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let json2 = json!(["KryptoanalyseAAAAAAAAA==", "DHBWMannheimAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let modulus: Polynomial = Polynomial::from_c_array(&json2);
let result = element1.pow_mod(10000000, modulus);
assert!(!result.is_zero())
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_poly_div_01() {
let element1 =
FieldElement::new(BASE64_STANDARD.decode("JAAAAAAAAAAAAAAAAAAAAA==").unwrap());
let element2 =
FieldElement::new(BASE64_STANDARD.decode("wAAAAAAAAAAAAAAAAAAAAA==").unwrap());
let result = element1 / element2;
assert_eq!(BASE64_STANDARD.encode(result), "OAAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_field_poly_div_01() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let json2 = json!(["0AAAAAAAAAAAAAAAAAAAAA==", "IQAAAAAAAAAAAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
//eprintln!("{:?}", element1);
println!("Beginning the new division");
let (result, remainder) = element1.div(&element2);
assert_eq!(
result.to_c_array(),
vec!["nAIAgCAIAgCAIAgCAIAgCg==", "m85znOc5znOc5znOc5znOQ=="]
);
assert_eq!(remainder.to_c_array(), vec!["lQNA0DQNA0DQNA0DQNA0Dg=="]);
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_field_poly_div_larger_div() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let json2 = json!(["0AAAAAAAAAAAAAAAAAAAAA==", "IQAAAAAAAAAAAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let element2: Polynomial = Polynomial::from_c_array(&json2);
//eprintln!("{:?}", element1);
println!("Beginning the new division");
let (result, remainder) = element2.div(&element1);
assert_eq!(result.to_c_array(), vec!["AAAAAAAAAAAAAAAAAAAAAA=="]);
assert_eq!(
remainder.to_c_array(),
vec!["0AAAAAAAAAAAAAAAAAAAAA==", "IQAAAAAAAAAAAAAAAAAAAA=="]
);
//assert_eq!(BASE64_STANDARD.encode(product), "MoAAAAAAAAAAAAAAAAAAAA==");
}
#[test]
fn test_field_poly_powmod_01() {
let json1 = json!([
"JAAAAAAAAAAAAAAAAAAAAA==",
"wAAAAAAAAAAAAAAAAAAAAA==",
"ACAAAAAAAAAAAAAAAAAAAA=="
]);
let json2 = json!(["KryptoanalyseAAAAAAAAA==", "DHBWMannheimAAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let modulus: Polynomial = Polynomial::from_c_array(&json2);
let result = element1.pow_mod(1000, modulus);
eprintln!("Result is: {:02X?}", result);
assert_eq!(result.to_c_array(), vec!["oNXl5P8xq2WpUTP92u25zg=="]);
}
#[test]
fn test_field_poly_powmod_k1() {
let json1 = json!(["JAAAAAAAAAAAAAAAAAAAAA==",]);
let json2 = json!(["KryptoanalyseAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let modulus: Polynomial = Polynomial::from_c_array(&json2);
let result = element1.pow_mod(1, modulus);
eprintln!("Result is: {:02X?}", result);
assert_eq!(result.to_c_array(), vec!["JAAAAAAAAAAAAAAAAAAAAA=="]);
}
#[test]
fn test_field_poly_powmod_k0() {
let json1 = json!(["JAAAAAAAAAAAAAAAAAAAAA==",]);
let json2 = json!(["KryptoanalyseAAAAAAAAA=="]);
let element1: Polynomial = Polynomial::from_c_array(&json1);
let modulus: Polynomial = Polynomial::from_c_array(&json2);
let result = element1.pow_mod(0, modulus);
eprintln!("Result is: {:02X?}", result);
assert_eq!(result.to_c_array(), vec!["gAAAAAAAAAAAAAAAAAAAAA=="]);
}
}